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We assume that a semi-infinite plate, set in a unifomm flow of fluid of
velocity V_ has started to heat up according to a law T (t) (T, is the
initial temperature of the surface). The problem consists in determining
the temperature distribution in the boundary layer.

Assuming the kinematic viscosity v constant over the velocity field

v, and vy, we have the Blasius solution for the boundary layer as follows:
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The heat-flux equation has the following fom:
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In this equation H is the enthalpy, P the Prandtl number.
We write down Equation (2) in variables t, x, {, using (1), thus:
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The boundary conditions and initial conditions for Equation (3) are
as follows:

8( z,0) =Hy,(t), 6(, x, 00) =00 =const, 8(0, z,{) =86,

In this expression 6 (f’) is the stagnation enthalpy profile for
steady flow with T"o = const. It will be evident from what follows that

965



966 Iu.A. Dem’ianov

the change in enthalpy on the wall can satisfy the more general law
Ho(t2) =a () +a(@)z+a)a®+4 ...
We will assume the solution to be of the fom

8 — 8, + 6. (¢, ,0)

For 6, we arrive at the following homogeneous equation:
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which has the following initial, and boundary, conditions:
61 (¢, z, 0) = Hy — Hy, B (¢, 2, 00) =61 (0, z,8) =0
Now 1f we write the boundary condition on the wall in the fomm
Hw - Hwo == EAntn
we can seek a solution in the form of a series
0y = DA, (1, x,0)

in which functions $ (¢, x, {) satisfy the equation
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and conditions

@n (¢, 2, 0) =1, @n (t, z, 00) =0 (5)

It follows from dimensional analysis considerations that the functions
¢, only depend on two dimensionless variables £=z/V t and {.

Equation (5) then takes the following fomm:

,00, 7 9, 1 %, (6)
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Series solutions to the latter equation can be obtained for both small
and large values of the variable &.

It is easy to show that for large values of ¢ the solution for ¢, can
be represented as follows:
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where functions yk(z) satisfy the equations and the boundary conditions

e+ zyo’ — nyo =0
P b (o4 2) e =0
Py + oy’ — (n+ Qs +azy —fays
Plys 4+ _; zys’ — (n + _g) _ﬁ“2z4y1 + 3azys — —: azlys’ +
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! + m azz"yo' =0

+ 3 a?y — T al2iye’ = 0
Py + Lzyd — (n+ 6) Ys + 5ozys — o atsys + Loty
+ 2 atglye’ — 028y + o alsbye’ — azzys =0

a = f0), y (0) =1, yo(oo):O, Yr (0) = yx (00) =0 for k>0

The solution for y,(z) can be put in the fomm

Yo (3) = Conn(% iZV}_)) Zon (—;‘ZVI), °°)
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yr (2) = H2n+ak(% iZVﬁ) S exp (—% sz) [H2"+3" (% iz Vﬁ)]—2><
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(k=1,2,3,..)

Here H, are Hemite polynomials of degree m

Zm (B, 9) = S H—z z(dé)

() = % aPlyo’ (1), hz (1) = aPly’ () — % aPtys — % a?Ptvy’ (1)

hs (1) = %aPﬁyz' ® + Zo4—,a2Pt4y1 (t) — 3atPy: (t) —
— PPy (1) 4 2 a*Pttye’ (1)
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ye (t) = 5 aPlys’ (1) — o-aPtys (1) + 557 a2Pt5yz () —
— B 43Py (1) — 2T APy’ (1) +aatPly () — -5 aPPEY: (0)

Cy = [Hgn (O)Zgn (0, OO)]_1 for 2n even

¢y, = —i [Hy' (0)]-1 for 2n odd

(oefficients ¢, are found from the condition yk(O) =

To find the solution for small values of ¢ it is desirable, in Equa-
tion (6), to transform to the variables & and f’

dp, w2 0%, v 0Q,
nign + 57 —8) 5 = b b+ (1) B (7

Then, for the function Y,(f’) of the series

P = QEFY ()

we obtain a system of ordinary differential equations of the fom

vs d2Y ay
P +< )7 G = =k )Y ®

with boundary conditions
Yo (0)=1, Yoe(1)=0, Y,(0)=Y,{1)=0 for k<0

The solution to the equation for Y, (f,) corresponds to a quasi-steady
tenperature variation in the boundary layer; it can be found, for
instance in[11].

It is easy to obtain an spproximate solution for the subsequent func-
tions Y, using the method of integral expressions. In such a case it is
desirable to represent solutions Y,(f") as mth degree polynomials in f”;
the latter having to satisfy the boundary conditions

Y (O): Yk (1):0 fork>1
Y (0)="2, Y (©)=0 for k>2

and, additionally, m — 2 conditions obtained by integrating Equations (8)
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multiplied by f'~l(l =0,1 2 ..., m—3) from0 to L

By representing Y, (f") as polynomials we obtain a system of linear
algebraic equations for the coefficients.

For instance, for m = 3
Yi=a (' — [?) for k> 1
’ n ’ n ’
Yy=af +2a—2p‘/2—(a1+m>73

and from the integral relations for P= 1 and k > 3 we obtain
1

k - 1 - ; "o 1l ’
a=—0"1=0 =y
4(5 F +6c1) ;
From the above, we derive
i=k
_ k—1—n)k—2—n)...2—n)a /2. —1
ax = i Ll_:l3 <1—5l +601>]
It is easy to deduce the following:
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Therefore
k—1—n)(k—2 1 BTt /2
el —_— —_ “ e —_— . -1
a4 = ( n) ( 4k_ln) (1—n)n 1“‘[ (Bl + 6cl>] for k >1
i=1

The series for (d¢,/d f*) converges for & < 8/15. If we make use of the
expression for ¢  for small and for large values of £ we arrive at an
approximate solution of the problem over the whole range of variation of
this variable.

The solution obtained here can be used for the case where, instead of
incompressible fluid, we deal with a gas which obeys a viscosity law
pp= const. It was shown [2] that for this case the variable ¢ should be
replaced by
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